Assessing potential errors of MRI-based measurements of pulmonary blood flow using a detailed network flow model.

نویسندگان

  • K S Burrowes
  • R B Buxton
  • G K Prisk
چکیده

MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64-74% of that in the absence of a gap in the sagittal plane and 53-84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational simulations of nanoparticle transport in a three-dimensional capillary network

Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...

متن کامل

Convex gradient optimization for increased spatiotemporal resolution and improved accuracy in phase contrast MRI

PURPOSE To evaluate convex gradient optimization (CVX) for increased spatiotemporal resolution and improved accuracy for phase-contrast MRI (PC-MRI). METHODS A conventional flow-compensated and flow-encoded (FCFE) PC-MRI sequence was compared with a CVX PC-MRI sequence using numerical simulations, flow phantom experiments, and in vivo experiments. Flow measurements within the ascending aorta,...

متن کامل

Flow Visualization by Conditional Sampling of a Single X-Wire Probe in a Very Long Run Experiment

Flow visualization techniques using tracer markers such as die, smoke, hydrogen bubbles, etc., have been widely used in experimental investigations of large scale structures of a variety of flow fields. They have played an important role in understanding the physics of the coherent structures formation and evolution in the transitional as well as the turbulent regions of the flow fields. Howeve...

متن کامل

A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin

Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...

متن کامل

Flow Visualization by Conditional Sampling of a Single X-Wire Probe in a Very Long Run Experiment

Flow visualization techniques using tracer markers such as die, smoke, hydrogen bubbles, etc., have been widely used in experimental investigations of large scale structures of a variety of flow fields. They have played an important role in understanding the physics of the coherent structures' formation and evolution in the transitional as well as the turbulent regions of the flow fields. Howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 2012